Angenommen, man untersucht die Grundgesamtheit von Kindern, die Gymnasien besuchen, hinsichtlich ihrer Intelligenzleistung. Der unbekannte Parameter ist also die mittlere Intelligenzleistung der Kinder, die ein Gymnasium besuchen. Wenn nun zufällig aus dieser Grundgesamtheit eine Stichprobe des Umfanges {\displaystyle n}n (also mit {\displaystyle n}n Kindern) gezogen wird, dann kann man aus allen {\displaystyle n}n Messergebnissen den Mittelwert berechnen. Wenn nun nach dieser Stichprobe noch eine weitere, zufällig gezogene Stichprobe mit der gleichen Anzahl von {\displaystyle n}n Kindern gezogen und deren Mittelwert ermittelt wird, so werden die beiden Mittelwerte nicht exakt übereinstimmen. Zieht man noch eine Vielzahl weiterer zufälliger Stichproben des Umfanges {\displaystyle n}n, dann kann die Streuung aller empirisch ermittelten Mittelwerte um den Mittelwert der Grundgesamtheit ermittelt werden. Diese Streuung ist der Standardfehler. Da der Mittelwert der Stichprobenmittelwerte der beste Schätzer für den Mittelwert der Grundgesamtheit ist, entspricht der Standardfehler der Streuung der empirischen Mittelwerte um den Mittelwert der Grundgesamtheit. Er bildet nicht die Intelligenzstreuung der Kinder, sondern die Genauigkeit des errechneten Mittelwerts ab.